Aller au contenu Aller au menu Aller à la recherche

accès rapides, services personnalisés
Rechercher
Institut de minéralogie, de physique des matériaux et de cosmochimie
UMR 7590 - UPMC/CNRS/IRD/MNHN

Soutennace d'Andrea Paradisi

Andrea Paradisi, doctorant dans l'équipe Minéralogie magnétique de basse dimensionnalité (MIMABADI) 

soutient sa thèse le jeudi 3 novembre 2016 à 14 h

IMPMC, Université P. et M. Curie, 4, Place Jussieu, 75005 Paris   Salle de conférence, 4e étage, Barre 22-23, Salle 1.

Ultra-high carrier modulation in two dimensions through Space Charge Doping: graphene and zinc oxide 

 

Schématisation du dopage par charge d'espace.

 

Résumé

La modulation de la densité de charge est un aspect important de l'étude de les transitions de phase électroniques ainsi que des propriétés électroniques des matériaux et il est à la base de plusieurs applications dans la micro-électronique. L'ajustement de la densité des porteurs de charge (dopage) peut être fait par voie chimique, en ajoutant des atomes étrangers au réseau cristallin du matériau ou électrostatiquement, en créant un accumulation de charge comme dans un Transistor à Effet de Champ. Cette dernier méthode est réversible et particulièrement appropriée pour les matériaux
bidimensionnels (2D) ou pour des couches ultra-minces.


Le Dopage par Charge d'Espace est une nouvelle technique inventée et développée au cours de ce travail de thèse pour le dopage électrostatique de matériaux déposés sur la surface du verre. Une charge d'espace est créée à la surface en provoquant le mouvement des ions sodium présents dans le verre sous l'effet de la chaleur et d'un champ électrique extérieur. Cette espace de charge induit une accumulation de charge dans le matériau déposé sur la surface du verre, ce qui peut être supérieure à 10^14/cm^2. Une caractérisation détaillée faite avec mesures de transport, effet Hall, mesures Raman et mesures de Microscopie #a Force Atomique (AFM) montrent que le dopage est réversible, bipolaire et il ne provoque pas des modifications chimiques. Cette technique peut être appliquée #a des grandes surfaces, comme il est montré pour le cas du graphène CVD.

Dans une deuxième partie le dopage par espace de charge est appliqué à des couches ultra-minces (< 40 nm) de ZnO_(1-x). Le résultat est un abaissement de la résistance par carré de 5 ordres de grandeur. Les mesures de magnéto-transport faites à basse température montrent que les électrons dopés sont confinés en deux dimensions. Une transition remarquable de la localisation faible à l'anti-localisation est observée en fonction du dopage et de la température et des conclusions sont tirées à propos des phénomènes de diffusion qui gouverne le transport électronique dans des différentes conditions dans ce matériau.

 

Jury

  • Sophie Gueron, D.R. CNRS, Université Paris-Sud (Rapportrice)
  • Javier Viilegas D.R. CNRS, CNRS/Thales (rapporteur)
  • Massimiliano Marangolo , Professeur UPMC, UPMC (examinateur)
  • Luca Perfetti , Professeur École polytechnique, École polytechnique (examinateur)
  • Abhay Shukla, IMPMC (directeur de thèse)

Cécile Duflot - 25/10/16

Traductions :

    Spectroscopie : des signatures électroniques et magnétiques mesurées en ultra-haute résolution

    Les spectroscopies dites « de cœur », comme la spectroscopie d’absorption des rayons X (XAS), sont des outils désormais couramment utilisés en sciences des matériaux pour sonder l’environnement d’un élément chimique spécifique. Enregistrées sur une source de rayonnement synchrotron, les signatures spectrales...

    » Lire la suite

    Contact

    Guillaume Fiquet (Guillaume.Fiquet @ impmc.upmc.fr)

    Directeur de l'institut

    33 +1 44 27 52 17

     

    Nalini Loret (Nalini.Loret @ impmc.upmc.fr)

    Attachée de direction

    33 +1 44 27 52 17

     

    Dany Thomas-Emery (danielle.thomas @ impmc.upmc.fr)

    Gestion du personnel

    33 +1 44 27 74 99

     

    Danielle Raddas (cecile.duflot @ impmc.upmc.fr)

    Gestion financière

    33 +1 44 27 56 82

     

    Cécile Duflot (cecile.duflot @ impmc.upmc.fr)

    Chargée de communication

    33 +1 44 27 46 86

     

    Adresse postale

    Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590

    Université Pierre et Marie Curie - 4, place Jussieu - BC 115 - 75252 Paris Cedex 5

     

    Adresse physique

    Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590

    Université Pierre et Marie Curie - 4, place Jussieu - Tour 23 - Barre 22-23, 4e étage - 75252 Paris Cedex 5

     

    Adresse de livraison

    Accès : 7 quai Saint Bernard - 75005 Paris, Tour 22.

    Contact : Antonella Intili : Barre 22-23, 4e étage, pièce 420, 33 +1 44 27 25 61

     

     

    Fax : 33 +1 44 27 51 52

    L'IMPMC en chiffres

    L'IMPMC compte environ 195 personnes dont :

     

    • 40 chercheurs CNRS
    • 46 enseignants-chercheurs
    • 19 ITA CNRS
    • 15 ITA non CNRS
    • 50 doctorants
    • 13 post-doctorants
    • 12 bénévoles

     

     Chiffres : janvier 2016