Aller au contenu Aller au menu Aller à la recherche

accès rapides, services personnalisés
Rechercher
Institut de minéralogie, de physique des matériaux et de cosmochimie
UMR 7590 - UPMC/CNRS/IRD/MNHN

Diamond Anvil Cells

Experiments on high-temperature liquids in a laser-heated DAC are relatively difficult due to potential reaction of the sample with the diamond anvils, chemical diffusion and difficulties to keep liquids in the focal spot of the IR heating laser. We need to better understand how a molten sample evolves in the diamond anvil cell as a function of time and composition. Combining fast in situ X-ray diagnostics such as diffraction or absorption is now feasible but characterization studies of LH-DAC recovered samples using focused ion beam (FIB) and further analytical TEM analyses is essential to get a better control on experiments. No systematic study of recovered LH-DAC has been performed so far to understand how melting occurs in LH-DAC and how liquid migrate in the pressure medium. The study of recovered samples and 3D texture of quenched liquids are restricted to very few cases, such as the melting study of peridotite, a good proxy for the Earth’s mantle (e.g. Fiquet et al., 2010).

A laser-heating experiment is a subtle equilibrium between the energy brought to the sample through the diamond anvil by one IR laser, which results in a hot spot, and the loss of energy (and resulting decrease of temperature) which depends on the thermal insulation, the type of pressure transmitting medium, the geometry of the experiment, and the spatial stability of the sample. A clear improvement will arise when the geometry of samples, types and thickness of insulating media will be perfectly controlled at the micron scale. We therefore plan to control starting material geometry through a plasma deposition method (well characterized thickness of insulator and sample, with parallel layers), that will enable us to set up a reproducible procedure for the study of melts under planetary core conditions.

 

© CNRS Photothèque / Cyril Frésillon

Diamond Anvil Cells, IMPMC

Cécile Duflot - 16/02/16

Genèse de gisements d’un métal rare prometteur, le scandium

Les métaux rares jouent un rôle critique pour le futur de notre société, à travers leur utilisation dans les technologies de l’ère numérique et de la transition énergétique. Cet avenir est néanmoins conditionné par les capacités d’approvisionnement. Parmi ces métaux, le scandium est particulièrement...

» Lire la suite

Contact

Guillaume Fiquet (Guillaume.Fiquet @ impmc.upmc.fr)

Directeur de l'institut

33 +1 44 27 52 36

 

Nalini Loret (Nalini.Loret @ impmc.upmc.fr)

Attachée de direction

33 +1 44 27 52 17

 

Dany Thomas-Emery (danielle.thomas @ impmc.upmc.fr)

Gestion du personnel

33 +1 44 27 74 99

 

Danielle Raddas (cecile.duflot @ impmc.upmc.fr)

Gestion financière

33 +1 44 27 56 82

 

Cécile Duflot (cecile.duflot @ impmc.upmc.fr)

Chargée de communication

33 +1 44 27 46 86

 

Adresse postale

Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590

Université Pierre et Marie Curie - 4, place Jussieu - BC 115 - 75252 Paris Cedex 5

 

Adresse physique

Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590

Université Pierre et Marie Curie - 4, place Jussieu - Tour 23 - Barre 22-23, 4e étage - 75252 Paris Cedex 5

 

Adresse de livraison

Accès : 7 quai Saint Bernard - 75005 Paris, Tour 22.

Contact : Antonella Intili : Barre 22-23, 4e étage, pièce 420, 33 +1 44 27 25 61

 

 

Fax : 33 +1 44 27 51 52

L'IMPMC en chiffres

L'IMPMC compte environ 195 personnes dont :

 

  • 40 chercheurs CNRS
  • 46 enseignants-chercheurs
  • 19 ITA CNRS
  • 15 ITA non CNRS
  • 50 doctorants
  • 13 post-doctorants
  • 12 bénévoles

 

 Chiffres : janvier 2016