Aller au contenu Aller au menu Aller à la recherche

accès rapides, services personnalisés
Rechercher
Institut de minéralogie, de physique des matériaux et de cosmochimie
UMR 7590 - UPMC/CNRS/IRD/MNHN

Abhay Shukla

COORDONNEES

Téléphone : 01 44 27 52 26
Courriel(s) : abhay.shukla @ impmc.upmc.fr

 

FONCTION ET RATTACHEMENT

Professor, Physics faculty IMPMC-UPMC

 

CARRIERE

2013-                                 Professeur classe exceptionnelle, CNU 28. IMPMC-UPMC        

2012-                                 Member, board of the UPMC; Member, board of the UPMC foundation

2011-                                 Member of the executive committee of Labex MATISSE

2009-2013                         Director, Ecole Doctorale Physique et Chimie des Matériaux (ED397)

2009-2010                         CNRS secondment

2007-2013                         Professeur 1ère classe, CNU 28. IMPMC-UPMC

2005-                                 Member of the UPMC Physics Faculty recruitment committee

2004-                                 PEDR followed by Prime d’Investissement Recherche

2002-2007                         Professeur 2ème classe, CNU 28. IMPMC-UPMC

1999-2002                         ESRF (Grenoble) Scientist, Electronic excitations and phonons

1996-1999                         ESRF (Grenoble) Postdoc, High Energy Inelastic Scattering and Diffraction

1995-1996                         Postdoc fellowship (Fonds National Suisse de Recherche Scientifique) at ESRF

1995                                  Docteur ès sciences, mention Physique, Université de Genève

1990                                  Diplôme d’ingénieur physicien, Ecole Polytechnique Fédérale de Lausanne

 

DOMAINE D'EXPERTISE

1) Electronic properties, vibrational states and applications of 2D materials and devices. (group page)

- Electronic phase transitions, vibrational states. These are directly related to the density of electronic states at the Fermi level, the strength of the electron-phonon coupling as also to the number of layers of 2D material. We control the density of states at the Fermi level through our space charge doping method. Vibrational and electronic properties also depend on the number of 2D layers.

Onset of two-dimensional superconductivity in space charge doped few-layer Molybdenum Disulphide

http://www.nature.com/articles/ncomms9826

Anharmonic phonons in few-layer MoS2: Raman spectroscopy of ultralow energy compression and shear modes

http://journals.aps.org/prb/abstract/10.1103/PhysRevB.87.195316

Epitaxial Graphene on 4H-SiC(0001) Grown under Nitrogen Flux: Evidence of Low Nitrogen Doping and High Charge Transfer

http://pubs.acs.org/doi/abs/10.1021/nn304315z

 

- Efficient optoelectronic devices. Combining layers of 2D materials with complementary properties is a promising method to form a hybrid structure with new properties. An example is combining graphene (well suited for charge transport) with a layered direct gap semiconductor (ideal for light to charge conversion), for an efficient photoconductor. Such a device can also be configured in a vertical geometry to maximize device effective volume and minimize losses in transport.

A high performance graphene/few-layer InSe photo-detector

http://pubs.rsc.org/en/Content/ArticleLanding/2015/NR/C5NR00400D#!divAbstract

Single step fabrication of N-doped graphene/Si3N4/SiC heterostructures

http://link.springer.com/article/10.1007%2Fs12274-014-0444-9

Anodic bonded 2D semiconductors: from synthesis to device fabrication

https://hal.archives-ouvertes.fr/hal-01053499/

 

 - Transparent Conducting Electrodes through space charge doping of large area thin films deposited on glass.

Space charge induced electrostatic doping of two-dimensional materials: Graphene as a case study

http://aip.scitation.org/doi/abs/10.1063/1.4932572?journalCode=apl

Techniques: 2D films and device preparation, low temperature magnetotransport, Raman, AFM

 

2) Electronic and structural properties of materials using X-ray synchrotron spectroscopy. I have used and developed methods for measurements of electronic momentum distributions, electronic excitations and phonons in solids, at the European Synchrotron Radiation Facility at Grenoble and at the UPMC. I co-proposed the GALAXIES inelastic scattering beamline at SOLEIL, Saclay. Some areas I have focused on include:

- Electronic excitations, phase transitions

Detecting Non-bridging Oxygens: Non-Resonant Inelastic X-ray Scattering in Crystalline Lithium Borates

http://pubs.acs.org/doi/abs/10.1021/ic501730q

Iron Under Pressure: Kohn Tweezers and Remnant Magnetism

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.106.247201

Inelastic x-ray scattering by electronic excitations under high pressure

http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.847

Localized and delocalized excitons: Resonant inelastic X-ray scattering in La2-xSrxNiO4 and La2-xSrxCuO4

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.96.157004

Polarized resonant inelastic x-ray scattering as an ultrafine probe of excited states of La2CuO4

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.96.077006

New spectroscopy solves an old puzzle: The Kondo scale in heavy fermions

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.88.196403

Dynamical reconstruction of the exciton in LiF with inelastic x-ray scattering

http://www.pnas.org/content/105/34/12159

Probing the 3d spin momentum with X-ray emission spectroscopy: The case of molecular-spin transitions

http://pubs.acs.org/doi/abs/10.1021/jp0615961

 

- Phonons and electrons in superconductors

Phonon dispersion and lifetimes in MgB2

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.90.095506

Anomalous dispersion of longitudinal optical phonons in Nd1.86Ce0.14CuO4+delta determined by inelastic x-ray scattering

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.88.167002

Study of the chain related Fermi-surface in REBa2Cu3O7-delta

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.71.4047

Hole depletion and localization due to disorder in insulating PrBa2Cu3O7-delta: A Compton scattering study

http://journals.aps.org/prb/abstract/10.1103/PhysRevB.59.12127

 

- Electronic structure of the hydrogen bond and structural phase diagrams of hydrogen bonded crystals

Ab initio calculations of the hydrogen bond

http://journals.aps.org/prb/abstract/10.1103/PhysRevB.66.235101

Deuteron Momentum Distribution in KD2HPO4

http://iopscience.iop.org/article/10.1088/1367-2630/10/1/013016

Hydrogen bonding and coordination in normal and supercritical water from x-ray inelastic scattering

http://journals.aps.org/prb/abstract/10.1103/PhysRevB.76.245413

Covalency of the hydrogen bond in ice: A direct x-ray measurement

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.82.600

 

Techniques: inelastic X-ray scattering, Raman scattering and X-ray diffraction. Resonant conditions, low temperature and high pressure.

 

3) Instrumentation and technical innovations:

Patents:

- Anodic bonding: a method to make few layer 2D films of layered materials (WO 2009 074755)

- Space Charge doping: A method to electrostatically dope 2D thin films (FR 1557308)

Space charge induced electrostatic doping of two-dimensional materials: Graphene as a case study

http://aip.scitation.org/doi/abs/10.1063/1.4932572?journalCode=apl

Graphene made easy: High quality, large-area samples

http://www.sciencedirect.com/science/article/pii/S0038109809000829

The GALAXIES beamline at the SOLEIL synchrotron: inelastic X-ray scattering and photoelectron spectroscopy in the hard X-ray range

http://scripts.iucr.org/cgi-bin/paper?S160057751402102X

Spherically bent analyzers for resonant inelastic X-ray scattering with intrinsic resolution below 200 meV https://doi.org/10.1107/S090904950501472X

High energy resolution five-crystal spectrometer for high quality fluorescence and absorption measurements on an x-ray absorption spectroscopy beamline

http://aip.scitation.org/doi/abs/10.1063/1.4728414?journalCode=rsi

High-resolution spectroscopy on an X-ray absorption beamline

https://doi.org/10.1107/S0909049508043768

Analysis of positron lifetime spectra using quantified maximum-entropy and a general linear filter

http://www.sciencedirect.com/science/article/pii/016890029390286Q

 

PUBLICATIONS

PUBLICATIONS ET BREVETS/PUBLICATIONS AND PATENTS

2 patents.

100 publications, full lists:

http://www.researcherid.com/rid/G-6753-2011

https://scholar.google.fr/citations?user=b9GjaA0AAAAJ&hl=fr

10/01/17

Traductions :

    Mesurer l’importance des effets quantiques avec des ondes sonores : l’élasticité de l’hydrogène solide à haute pression

    Le principe d’Heisenberg de la mécanique quantique interdit la détermination simultanée de la position et de la vitesse. Cela se traduit par des vibrations résiduelles des atomes même à température nulle. Aujourd’hui encore, l’importance de la contribution des effets quantiques avec l’augmentation de...

    » Lire la suite

    Contact

    Guillaume Fiquet (Guillaume.Fiquet @ impmc.upmc.fr)

    Directeur de l'institut

    33 +1 44 27 52 17

     

    Nalini Loret (Nalini.Loret @ impmc.upmc.fr)

    Attachée de direction

    33 +1 44 27 52 17

     

    Dany Thomas-Emery (danielle.thomas @ impmc.upmc.fr)

    Gestion du personnel

    33 +1 44 27 74 99

     

    Danielle Raddas (cecile.duflot @ impmc.upmc.fr)

    Gestion financière

    33 +1 44 27 56 82

     

    Cécile Duflot (cecile.duflot @ impmc.upmc.fr)

    Chargée de communication

    33 +1 44 27 46 86

     

    Expertise de météorites

     

    Expertise de matériaux et minéraux

     

    Adresse postale

    Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590

    Université Pierre et Marie Curie - 4, place Jussieu - BC 115 - 75252 Paris Cedex 5

     

    Adresse physique

    Institut de minéralogie, de physique des matériaux et de cosmochimie - UMR 7590

    Université Pierre et Marie Curie - 4, place Jussieu - Tour 23 - Barre 22-23, 4e étage - 75252 Paris Cedex 5

     

    Adresse de livraison

    Accès : 7 quai Saint Bernard - 75005 Paris, Tour 22.

    Contact : Antonella Intili : Barre 22-23, 4e étage, pièce 420, 33 +1 44 27 25 61

     

     

    Fax : 33 +1 44 27 51 52

    L'IMPMC en chiffres

    L'IMPMC compte environ 195 personnes dont :

     

    • 40 chercheurs CNRS
    • 46 enseignants-chercheurs
    • 19 ITA CNRS
    • 15 ITA non CNRS
    • 50 doctorants
    • 13 post-doctorants
    • 12 bénévoles

     

     Chiffres : janvier 2016