Aller au contenu Aller au menu Aller à la recherche

accès rapides, services personnalisés
Rechercher
Institut de minéralogie, de physique des matériaux et de cosmochimie
UMR 7590 - UPMC/CNRS/IRD/MNHN

Physical properties of materials

 

We employ the most advanced electronic structure methods, molecular dynamic algorithms, and electron-phonon calculation schemes to make quantitative predictions on existing or new materials. We evaluate experimentally accessible quantities, such as equation of states, phase transitions, transport, ARPES spectroscopy, quantum oscillations, spin susceptibilities. The systems we investigate, such as graphene-based materials, transition-metal oxides, low-dimensional materials, van der Waals compounds, BCS and high-temperature superconductors, are challenging from both theoretical and experimental sides, and they are at the current frontiers of material science research. Transport properties, transitions between different structural phases, excitation energies are routinely computed, with the aim of understanding the physical mechanisms behind them. From ab initio calculations or from appropriate parameterizations, we also derive low-energy Hamiltonians for the spin and structural degrees of freedom, in order to capture the ingredients necessary to explain the various material features.

 

Selected publications

L Paulatto, I Errea, M Calandra, F Mauri, First-principles calculations of phonon frequencies, lifetimes, and spectral functions from weak to strong anharmonicity: The example of palladium hydrides, Physical Review B 91, 054304 (2014) (link)

G Fugallo, A Cepellotti, L Paulatto, M Lazzeri, N Marzari, F Mauri, Thermal conductivity of graphene and graphite: collective excitations and mean free paths, Nano letters 14 (11), 6109 (2014) (link)

M. Hellgren, J. Baima, R. Bianco, M Calandra, F Mauri, L. Wirtz, Critical role of the exchange interaction for the electronic structure and charge-density-wave formation in TiSe2, Physical Review Letters 119 (2017) (link)

P. Werner, M. Casula, T. Miyake, F. Aryasetiawan, A. J. Millis, S. Biermann, Satellites and large doping- and temperature-dependence of electronic properties in hole-doped BaFe2As2, Nature Physics 8, 331 (2012)  (link)

D. Santos-Cottin, M. Casula, G. Lantz, Y. Klein, L. Petaccia, P. Le Févre, F. Bertran, E. Papalazarou, M. Marsi, A. Gauzzi, Rashba coupling amplification by a staggered crystal field, Nature Communications 7, 11258 (2016) (link)

W. Sacks, A. Mauger, and Y. Noat, From Cooper-pair glass to unconventional superconductivity: a unified approach to cuprates and pnictides, Solid State Comm. 257, 1 (2017) (link)

W. Sacks, A. Mauger, and Y. Noat, Universal spectral signatures in pnictides and cuprates: the role of quasiparticle-pair coupling, J. Phys. Condens. Mat. (2017) (link)

 

Researchers

Michele Casula, Guillaume Ferlat, Maria Hellgren, Michele Lazzeri, Lorenzo Paulatto, Guillaume Radtke, William Sacks

22/12/17

Traductions :